Exercise 7.2
Neatanasexenemererone 1000

$$
V(x)=\frac{1}{2} k x^{2}
$$

a)

$$
\begin{aligned}
& E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \\
& \omega=\sqrt{\frac{l}{n}}
\end{aligned}
$$

We charge $k \rightarrow(1+\varepsilon) k$
b)

$$
H^{\prime}=H-H_{0}=\frac{1}{2} k^{\prime} x^{2}-\frac{1}{2} k x^{2}=\frac{1}{2} k x^{2}(1+\varepsilon-1)=\frac{1}{2} k \varepsilon z^{2}=\varepsilon V(x)
$$

$$
E_{n}^{\prime}=\left\langle\psi_{n}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle=\varepsilon \underbrace{\langle n| V|n\rangle}_{\text {crevtition vale }}
$$

viral theorem: $\langle T\rangle=\langle V\rangle$ for stationery notes harmincoscllator

$$
E_{n}=\langle T\rangle+\langle V\rangle
$$

$$
\begin{aligned}
& \downarrow \\
& \langle v\rangle=\frac{1}{2} E_{n}^{0}=\frac{1}{2}\left(n+\frac{1}{2}\right) \hbar w
\end{aligned}
$$

f, $\varepsilon(x|V| n)=\frac{\varepsilon}{2}\left(x+\frac{1}{3}\right) L_{\omega}$, which is the first-ordertern' (derinotice) question a

$$
\begin{aligned}
& f^{\prime}=\frac{1}{2}(1+\varepsilon)^{-\frac{1}{2}} \quad f^{\prime \prime}=-\frac{1}{4}(1+\varepsilon)^{-\frac{3}{2}} \\
& E_{n, \text { nor }}=\left(n+\frac{1}{2}\right) k \omega^{\prime}=\left(n+\frac{1}{2}\right) \hbar \sqrt{\frac{\ell(1+\varepsilon)}{m}}=\left(n+\frac{1}{2}\right) k \sqrt{\frac{k}{m}} \sqrt{1 \times \varepsilon} \approx\left(n+\frac{1}{2}\right) k \sqrt{\frac{\alpha}{n}}\left(1+\frac{1}{2} \varepsilon-\frac{1}{d} \varepsilon^{2}+\ldots\right)
\end{aligned}
$$

