Exercise 4.37

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { a) } \left.s_{-} \left\lvert\, \begin{array}{ll}
1 & 0 \\
s_{-}=\hbar \\
k & 0
\end{array}\right.\right\}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{array}\right\} \\
& \left.\begin{array}{ll}
\text { a. } \\
s_{-} & \mid
\end{array} 10\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{\sqrt{2}}\left(f^{\downarrow}|\vec{v}| \Delta\right\rangle+0+\begin{array}{l}
\downarrow \\
0
\end{array}+\hbar|v\rangle\right) \\
& =\frac{1}{\sqrt{2}}(2 \pi|\omega\rangle) \\
& =\sqrt{2} \hbar \mid\langle\nu\rangle \\
& =\sqrt{2} \pi|1-1\rangle
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left.\left.\delta_{ \pm} \left\lvert\, \begin{array}{ll}
10 & 0\rangle=s_{ \pm}\left(\frac{1}{\sqrt{2}}(|\eta \nu\rangle-\langle\nu\rangle\right.
\end{array}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\vec{s}=\vec{s}^{(1)}+\dot{s}^{(1)} \\
\mathscr{s}^{2} \mid 1 \quad D=\left(\left(s^{(1)}\right)^{2}+\left(s^{(2)}\right)^{2}+2 s^{(1)} \cdot s^{(2)}\right) 1 \uparrow \nu
\end{array} \\
& =\left(s^{(1)^{2}}\right)^{2}|\uparrow\rangle+\left(s^{(2)}\right)^{2}|\uparrow\rangle+2 s^{(1)} \cdot s^{(1)}|\uparrow \uparrow\rangle \quad s_{x}\binom{1}{1}=\frac{\theta_{2}^{2}}{2}\left(\begin{array}{ll}
1 \\
1 & 1
\end{array}\right)\binom{1}{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6}{4} t^{2}|n\rangle+\frac{2 t^{2}}{4}|m\rangle=2 t^{2}|n\rangle \\
& \left.=1(4) h^{2} \|\right\rangle \\
& S^{2}|1-1\rangle=\left(\left(S^{(1)}\right)^{2}|\downarrow\rangle\right)|\downarrow\rangle+\omega\left(\left(s^{(2)}\right)^{2}|\nu\rangle\right)+2 S^{(\nu 0} S^{(2)}|\downarrow \nu\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6}{4} \hbar^{2}\left|\langle \rangle+2\left(\frac{\hbar^{2}}{4}|\uparrow\rangle-\frac{\hbar^{2}}{4}|\uparrow \uparrow\rangle+\frac{\hbar^{2}}{4}|\mathcal{L}\rangle\right)\right. \\
& =2 \hbar^{2} \mid \omega \downarrow \\
& =1(1+1) \hbar^{2}|1-1\rangle
\end{aligned}
$$

