$\left|\begin{array}{ll}\frac{3}{2} & \frac{3}{2}\end{array}\right\rangle^{n s}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \quad\left|\frac{3}{2}-\frac{1}{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$

$s_{ \pm}\left|\begin{array}{ll}s & m\end{array}\right\rangle=t \sqrt{s(s+1)-m(m \pm 1)}|s \quad m \pm 1\rangle$

$$
S_{+}=\hbar\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0
\end{array}\right) \quad S_{-}=\hbar\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0
\end{array}\right)
$$

$$
S_{x}=\frac{1}{2}\left(S_{+}+S_{-}\right)=\frac{t}{2}\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
\sqrt{3} & 0 & 2 & 0 \\
0 & 2 & 0 & \sqrt{3} \\
0 & 0 & \sqrt{3} & 0
\end{array}\right)
$$

$$
\begin{aligned}
&\left|\begin{array}{cccc}
-\lambda & \sqrt{3} & 0 & 0 \\
\sqrt{3} & -\lambda & 2 & 0 \\
0 & 2 & -\lambda & \sqrt{3} \\
0 & 0 & \sqrt{3} & -\lambda
\end{array}\right|=-\lambda\left|\begin{array}{ccc}
-\lambda & 0 \\
2 & -\lambda \sqrt{3} \\
0 & \sqrt{3} & -\lambda
\end{array}\right|-\sqrt{3}\left|\begin{array}{ccc}
\sqrt{3} & 2 & 0 \\
0 & -\lambda & \sqrt{3} \\
0 & \sqrt{3} & -\lambda
\end{array}\right| \\
&=-\lambda\left(-\lambda\left(\lambda^{2}-3\right)-2(-2 \lambda)\right)-\sqrt{3} \sqrt{3}\left(\lambda^{2}-3\right) \\
&=-\lambda\left(3 \lambda-\lambda^{3}+4 \lambda\right)-\sqrt{3} \sqrt{3} \lambda^{2}+3 \sqrt{3} \sqrt{3} \\
&=\lambda^{4}-7 \lambda^{2}-3 \lambda^{2}+9 \\
&=\lambda^{4}-10 \lambda^{2}+9 \\
&\left\{u=\lambda^{2}\right\} \\
&=u^{2}-10 u+9 \\
&=(u-g)(u-1) \\
&=\left(\lambda^{2}-g\right)\left(\lambda^{2}-1\right) \\
& \Downarrow \\
& \lambda \lambda^{2}=9 \vee \lambda^{2}=1 \\
& \lambda= \pm 3 \vee \lambda= \pm 1 \\
& \forall
\end{aligned}
$$

fo, the eighnolues of s_{x} are $\frac{3}{2} k, \frac{1}{2} h,-\frac{1}{2} k,-\frac{3}{2} \nRightarrow$

