$A^{2}=\frac{1}{25}$
$A= \pm \frac{1}{5}$

$\left\langle s_{x}\right\rangle=X^{t} s_{x} x=\frac{1}{5}\left(-3(i) \frac{R}{2}\left(\begin{array}{ll}0 \\ 1 \\ 1\end{array}\right) \frac{1}{5}\binom{3 i}{4}\right.$

$$
\begin{aligned}
& =\frac{\pi}{50}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{3 i}{4} \\
& =\frac{F}{50}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{4}{3 i} \\
& =\frac{\pi}{50}(-12 i+12 i)=0
\end{aligned}
$$

$\left\langle s_{y}\right\rangle=X^{+} s_{y} x=\frac{1}{5}\left(\begin{array}{ll}-3 i & 4\end{array}\right) \frac{t}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \div\binom{ 3 i}{4}$

$$
=\frac{7}{50}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{-4 i}{-3}
$$

$$
\begin{aligned}
=\frac{k}{50}(-12-12) & =-\frac{24}{50} k \\
& =-\frac{12}{15} \pi
\end{aligned}
$$

$\left\langle s_{n}\right\rangle=X^{+} s_{z} X=\frac{1}{5}\left(\begin{array}{ll}-3 i & 4\end{array}\right) \frac{2}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \frac{1}{5}\binom{3 i}{4}$

$$
=\frac{F}{5_{0}}(-3 i 4)\binom{3 i}{-4}
$$

$$
=\frac{t}{50}\left(-9 i^{2}-16\right)
$$

$$
-\frac{7 z}{50}
$$

$$
\begin{aligned}
\left\langle s_{X^{2}}\right\rangle=X^{+} s_{x} s_{x} X & =\frac{1}{5}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{5}\binom{3 i}{4} \\
& =\frac{\hbar^{2}}{100}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{4}{3 i} \\
& =\frac{\hbar^{2}}{100}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{3 i}{4} \\
& =\frac{\hbar^{2}}{100}\left(-9 i^{2}+16\right) \\
& =\frac{\hbar^{2}}{100}(9+16) \\
& =\frac{\hbar^{2} 25}{100}=\frac{t^{2}}{4}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left\langle S_{y}^{2}\right.
\end{array}\right)=X^{+} S_{y}^{2} X=\frac{1}{5}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\frac{\hbar}{2}\right)^{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{5}\binom{3 i}{4}
$$

$$
\left\langle s_{z}^{2}\right\rangle=x^{+} s_{z}^{2} x=\frac{t^{2}}{100}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad\binom{3 i}{4}
$$

$$
=\frac{h^{2}}{100}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{3 i}{-4}
$$

$$
=\frac{t^{2}}{100}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{3 i}{4}
$$

$$
=\frac{\hbar^{2}}{100}(g+16)=\frac{\hbar^{2}}{4}
$$

$$
=\sqrt{\frac{49}{25 \cdot 100} t^{2}}
$$

$$
=\frac{7}{50} \hbar
$$

$$
\sigma_{s_{2}}=\sqrt{\left.s_{s_{x}^{2}}\right\rangle-\left\langle s_{x}\right\rangle^{2}}=\sqrt{\frac{t^{2}}{4}-\frac{4 g}{250 \pi^{2}}}
$$

$$
=\sqrt{\frac{625-49}{2500} \hbar^{2}}
$$

$$
=\frac{t}{50} \sqrt{576}
$$

$$
=\frac{24}{50} h
$$

$$
=\frac{12}{25} \hbar
$$

(t) $\sigma_{s_{x}} \sigma_{s_{y}}=\frac{\hbar}{2} \frac{7}{50} \neq \frac{7 \hbar^{2}}{100} \geq \frac{\hbar}{2}\left|\left(s_{2}\right)\right|=\frac{7}{2.50} t^{2}=\frac{7}{100} \hbar^{2}$ $\sigma_{s_{y}} \sigma_{S_{z}}=\frac{7 \cdot 12}{50 \cdot 25} \hbar^{2} \geq \frac{\hbar}{2}\left|\left\langle s_{x}\right\rangle\right|=0$
$\sigma_{s_{z}} \sigma_{s_{x}}=\frac{t}{2} \frac{12}{25} t=\frac{12}{50} t^{2} \underline{y} \frac{t}{2}\left|\left\langle s_{y}\right\rangle\right|=\frac{\hbar 12}{2 \cdot 025} t=\frac{12}{50} \hbar^{2} V$

$$
\begin{aligned}
& \sigma_{S_{x}}=\sqrt{\left\langle S_{x}^{2}\right\rangle-\left\langle S_{x}\right\rangle^{2}}=\sqrt{\frac{k^{2}}{4}}=\frac{k}{2} \\
& \sigma_{s_{y}}=\sqrt{\left\langle S_{y}\right\rangle-\left\langle S_{y}\right\rangle^{2}}=\sqrt{\frac{k^{2}}{4}-\left(-\frac{12}{25} t\right)^{2}}=\sqrt{\frac{k^{2}}{4}-\frac{144}{625} \hbar^{2}} \\
& =\sqrt{\frac{2^{2} 2^{2} 265-576}{4^{2} 500}}
\end{aligned}
$$

