
$\left[L_{2}, x\right]=\left[x p_{1}-y p_{z}, x\right]=\left[\begin{array}{c}y \\ y\end{array}\left(3 p_{1}, x\right]-\left[y p_{p}, x\right]\right.$

$$
\begin{aligned}
& =x\left[p_{y}, x\right]+[x, x] p_{y}-y\left[p_{z}, x\right]-[y, x] p_{x} \\
& =0+0-y(-i(x)-0 \\
& =-i t y
\end{aligned}
$$

$[L x, y]=\left[x p_{y}-y p_{p_{x}}, y\right]=\left[x p_{y}, y\right]-\left[y p_{p_{x}}, y\right]$

$$
\begin{aligned}
&=x\left[p_{y}, y\right]+[x, y] p_{y}-y\left[p_{x}, y\right]-[y, y] p_{x} \\
& \downarrow \quad-i k_{x}
\end{aligned}
$$

$[L x, z]=\left[x p_{y}-y p_{x}, z\right]=\left[x p_{y}, z\right]-\left[y p_{x}, x\right]=0$ $\left[L_{2}, p_{x}\right]=\left[x p_{y}-y p_{x}, p_{x}\right]=\left[x p_{y}, p_{x}\right]-\left[y p_{x}, p_{x}\right]$

$$
\begin{aligned}
& =2\left[p_{y}, p_{x}\right]+\left[x, p_{x}\right] p_{y}-0 \\
& =\quad i t p_{y}
\end{aligned}
$$

$\left\langle\left[x, p_{y}\right]=\left[p p_{y}-y p_{x}, p_{y}\right]=\left[x p_{y}, p_{y}\right]-\left[y p_{x} p_{y}\right]\right.$

$$
\begin{aligned}
& =0-y\left[p_{x}, p_{y}\right]-\left[y, p_{y}\right] p_{x} \\
& =\quad-i k p_{x}
\end{aligned}
$$

$\left[L x, p_{x}\right]=\left[x p_{y}, p_{z}-\left[y p_{x}, p_{z}\right]=0-0=0\right.$
b
$\left[L_{z}, L_{x}\right]=\left[y_{p} y p_{x}-\lambda p_{y}\right]$
c) $\left[L x, r^{2}\right]=\left[L u, x^{2}\right]+\left[L r, y^{2}\right]+\left[L x, x^{2}\right]$

$$
=x[L, x]+[L, x] x+y[L 2, x]+[L, y] y+z[L, z]+[L x, x] z
$$

$$
=x i k y+i k y x-y i \hbar x-i k x y+0+0
$$

$$
=0
$$

$$
\left[L_{x}, p^{2}\right]=\left[L_{x}, p_{x}\right] p_{x}+f_{i}\left[L_{x}, p_{x}\right]+\left[L_{x,}, p_{y}\right] p_{y}+p_{y}\left[L_{x}, p_{y}\right]+p_{x}\left[x_{x}, p_{x}\right]+\left[k z, p_{x}\right] p_{x}
$$

$$
=i t p_{y} p_{x}+p_{x} i t p_{y}-i t p_{x} p_{y}-p_{y} i \hbar p_{x}+0+0
$$

$$
=0
$$

d) (By permutation x, y, x in question c) it follows the all compursty of L commute with p^{2} ard r^{2}

$$
\text { as } H=\frac{p^{2}}{2 m}+V(r)
$$

$=\frac{p^{2}}{2 n}+V\left(\sqrt{r^{2}}\right)$, Holy deride on p^{2} ard r^{3}, and thar H ames with L

$$
\begin{aligned}
& =\left[L_{x}, y p_{p_{x}}-z p_{y}\right] \\
& =\left[L_{x}, y p_{z}\right]-\left[L_{x}, z p_{y}\right] \\
& =\left[L_{x}, y\right] p_{p_{x}}+y\left[L_{z}, p_{z}\right]-\left[L_{z}, x\right] p_{y}-r\left[L_{x}, p_{y}\right] \\
& =-i z_{x} x p_{z}+0-0+i z p_{x} \\
& =i k\left(2 p_{k}-x p_{x}\right) \\
& =i k L_{y}
\end{aligned}
$$

