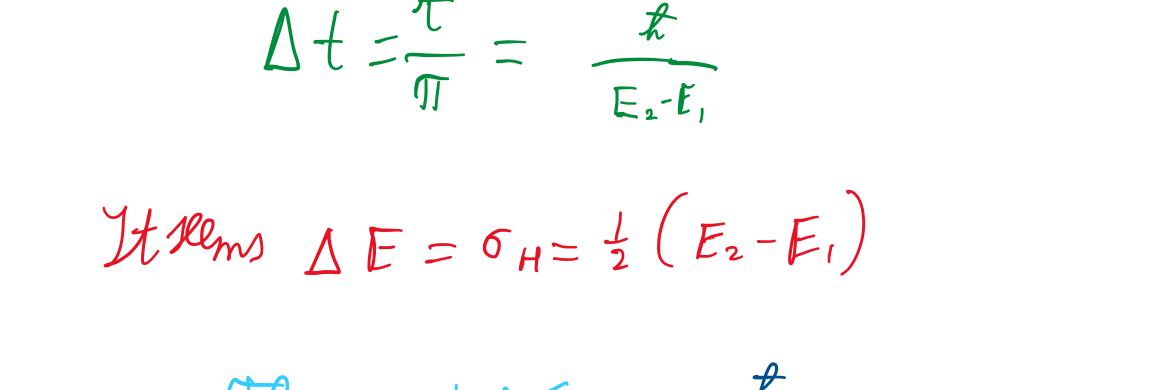
Exercise 3.38 Thursday, 3 September 2020 16:11


 $\Delta - t = \frac{\tau}{\pi}$

 $\Psi(x,0) = \frac{1}{\sqrt{2}} \left(\left(\Psi, \left(\mathcal{X} \right) \right) + \left(\Psi_{2} \left(\mathcal{X} \right) \right) \right)$ $\Psi(\mathcal{F},t) = \frac{1}{\sqrt{2}} \left(\Psi_1(\mathcal{F}) e^{-iE_1 t/k} + \Psi_2(\mathcal{F}) e^{-iE_2 t/k} \right)$

 $\left(\frac{\Psi(x,t)}{\Psi(x,o)} \right) = 0 = 0 \quad (orthogonal)$ $\frac{1}{2}\left(e^{i\mathbf{E}_{1}t/\mathbf{k}}\langle\Psi_{1}|\Psi_{1}\rangle+e^{i\mathbf{E}_{1}t/\mathbf{k}}\langle\Psi_{1}|\Psi_{2}\rangle+e^{i\mathbf{E}_{2}t/\mathbf{k}}\langle\Psi_{1}|\Psi_{2}\rangle+e^{i\mathbf{E}_{2}t/\mathbf{k}}\langle\Psi_{1}|\Psi_{2}\rangle\right)=0$ $\frac{1}{2}\left(e^{iE_{1}t/k}+e^{iE_{2}t/k}\right)=0$

 $-e^{iE_1t/k} = e^{iE_2t/k}$

 $-1 = e^{i(E_2 - E_i)t/k}$ $e^{i(2R+i)T} = e^{i(E_2-E_i)t/R}$ first time for b = 0 $e^{i \pi} = e^{i (E_{1} - E_{1}) \tau}$ $T = \frac{\left(E_2 - E_1\right)\tau}{k}$ $\tau = \frac{\pi E_2}{E_2 - E_1}$

