Tor a cigquathe Eof \hat{H}, whe

The $\hat{H}|\psi\rangle=\varepsilon\left(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle\mid+12\rangle\left\langle c_{1}\right|\right)\left(c_{1}|1\rangle+c_{2}|2\rangle\right)$
$\left.\left.=\varepsilon\left(c_{1}|1\rangle-c_{2}|2\rangle+c_{2}^{2} 2\right\rangle=1\right\rangle+c_{1}|2\rangle\right)$
$=\varepsilon\left(\left(c_{1}+c_{2}\right)|1\rangle+\left(c_{1}-c_{2}\right)|2\rangle\right)$
$\left.=E|\psi\rangle=E\left(c_{1}| \rangle+c_{2} / 2\right\rangle\right)$

$$
\begin{aligned}
& \varepsilon\left(c_{1}+c_{2}\right)=E c_{1} \quad \varepsilon\left(c_{1}-c_{2}\right)=E c_{2} \\
& \begin{aligned}
& C_{2}= \frac{E c_{1}-\varepsilon c_{1}}{\varepsilon} \quad c_{1}= \\
&=\left(\frac{E-1) c_{1}}{\varepsilon}=\frac{\left(\frac{E}{\varepsilon}+1\right) c_{2}}{\varepsilon}\right. \\
& \longrightarrow C_{2}=\left(\frac{E}{\varepsilon}-1\right)\left(\frac{E}{\varepsilon}+1\right) c_{2}
\end{aligned} \\
& 1=\left(\frac{E}{\varepsilon}\right)^{2}- \\
& \left(\frac{E}{\varepsilon}\right)^{2}=2 \\
& \frac{E}{\varepsilon}= \pm \sqrt{2} \\
& E= \pm \sqrt{2} \varepsilon \\
& c_{2}=\frac{E c_{1}-\varepsilon c_{1}}{\varepsilon} \\
& =\frac{ \pm \sqrt{2} \varepsilon c_{1}-\varepsilon c_{1}}{\varepsilon} \\
& =(\pm \sqrt{2}-1) c_{1}
\end{aligned}
$$

C, is an arbitrony nember

$$
\left|\psi_{ \pm}\right\rangle=C_{1}(|1\rangle+(\pm \sqrt{2}-1)|2\rangle)
$$

eseplanation ir lecture 4
$H_{m n}=\langle m| H^{2}|n\rangle ; H=\varepsilon(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 11)$

$=\varepsilon$

